National Institute of Justice Technology Assessment Program **Ballistic Resistant Protective Materials** NIJ Standard 0108.01 ## ABOUT THE TECHNOLOGY ASSESSMENT PROGRAM The Technology Assessment Program is sponsored by the Office of Development, Testing, and Dissemination of the National Institute of Justice (NIJ), U.S. Department of Justice. The program responds to the mandate of the Justice System Improvement Act of 1979, which created NIJ and directed it to encourage research and development to improve the criminal justice system and to disseminate the results to Federal, State, and local agencies. The Technology Assessment Program is an applied research effort that determines the technological needs of justice system agencies, sets minimum performance standards for specific devices, tests commercially available equipment against those standards, and disseminates the standards and the test results to criminal justice agencies nationwide and internationally. The program operates through: The Technology Assessment Program Advisory Council (TAPAC) consisting of nationally recognized criminal justice practitioners from Federal, State, and local agencies, which assesses technological needs and sets priorities for research programs and items to be evaluated and tested. The Law Enforcement Standards Laboratory (LESL) at the National Bureau of Standards, which develops voluntary national performance standards for compliance testing to ensure that individual items of equipment are suitable for use by criminal justice agencies. The standards are based upon laboratory testing and evaluation of representative samples of each item of equipment to determine the key attributes, develop test methods, and establish minimum performance requirements for each essential attribute. In addition to the highly technical standards, LESL also produces user guides that explain in nontechnical terms the capabilities of available equipment. The Technology Assessment Program Information Center (TAPIC) operated by a grantee, which supervises a national compliance testing program conducted by independent agencies. The standards developed by LESL serve as performance benchmarks against which commercial equipment is measured. The facilities, personnel, and testing capabilities of the independent laboratories are evaluated by LESL prior to testing each item of equipment, and LESL helps the Information Center staff review and analyze data. Test results are published in Consumer Product Reports designed to help justice system procurement officials make informed purchasing decisions. Publications issued by the National Institute of Justice, including those of the Technology Assessment Program, are available from the National Criminal Justice Reference Service (NCJRS), which serves as a central information and reference source for the Nation's criminal justice community. For further information, or to register with NCJRS, write to the National Institute of Justice, National Criminal Justice Reference Service, Washington, DC 20531. James K. Stewart, Director National Institute of Justice U.S. Department of Justice National Institute of Justice # Technology Assessment Program **Ballistic Resistant Protective Materials** NIJ Standard 0108.01 September 1985 # U.S. DEPARTMENT OF JUSTICE National Institute Of Justice James K. Stewart, Director ## ACKNOWLEDGMENTS This standard was formulated by the Law Enforcement Standards Laboratory (LESL) of the National Bureau of Standards under the direction of Daniel E. Frank, Manager, Protective Equipment Program and Lawrence K. Eliason, Chief of LESL. The technical research was performed by Nicholas J. Calvano of the Automated Production Technology Division. The standard has been reviewed and approved by the Technology Assessment Program Advisory Council and adopted by the International Association of Chiefs of Police (IACP) as an IACP standard. #### **FOREWORD** This document, NIJ standard-0108.01, Ballistic Resistant Protective Materials, is an equipment Standard developed by the Law Enforcement Standards Laboratory of the National Bureau of Standards. It is produced as part of the Technology Assessment Program of the National Institute of Justice (NIJ). A brief description of the program appears on the inside front cover. This standard is a technical document that specifies performance and other requirements equipment should meet to satisfy the needs of criminal justice agencies for high-quality service. Purchasers can use the test methods described in this standard to determine whether a particular piece of equipment meets the essential requirements, or they may have the tests conducted on their behalf by a qualified testing laboratory. Procurement officials may also refer to this standard in their purchasing documents and require that equipment offered for purchase meet the requirements. Compliance with the requirements of the standard may be attested to by an independent laboratory or guaranteed by the vendor. Because this NIJ standard is designed as a procurement aid, it is necessarily highly technical. For those who seek general guidance concerning the selection and application of law enforcement equipment, user guides have also been published. The guides explain in nontechnical language how to select equipment capable of performance required by an agency. NIJ standards are subjected to continuing review. Technical comments and recommended revisions are welcome. Please send suggestions to the Program Manager for Standards, National Institute of Justice, U.S. Department of Justice, Washington DC 20531. Before citing this or any other NIJ standard in a contract document, users should verify that the most recent edition of the standard is used. Write to: Chief, Law Enforcement Standards Laboratory, National Bureau of Standards, Gaithersburg, MD 20899. Lester D. Shubin Program Manager for Standards National Institute of Justice # NIJ STANDARD FOR BALLISTIC RESISTANT PROTECTIVE MATERIALS # **CONTENTS** | | Page | |-------------------------------|------| | Foreword | iii | | 1. Purpose | 1 | | 2. Scope and Classification | 1 | | 3. Definitions | 2 | | 4. Requirements | 4 | | 4.1 Acceptance Criteria | 4 | | 4.2 Workmanship | 4 | | 4.3 Labeling | 4 | | 4.4 Ballistic Resistance | 4 | | 5. Test Methods | 6 | | 5.1 Sampling | 6 | | 5.2 Test Equipment | 6 | | 5.3 Ballistic Resistance Test | 7 | | Appendix A—References | 9 | # COMMONLY USED SYMBOLS AND ABBREVIATIONS | Α | ampere | H | henry | nm | nanometer | |------|----------------------|--------|---------------------|------|---------------------| | ac | alternating current | h | hour | No. | number | | AM | amplitude modulation | hf | high frequency | o.d. | outside diameter | | cd | candela | Hz | hertz (c/s) | Ω | ohm | | cm | centimeter | i.d. | inside diameter | p. | page | | CP | chemically pure | in | inch | Pa | pascal | | c/s | cycle per second | ir | infrared | pe | probable error | | d | day | J | joule | pp. | pages | | dB | decibel | L | lambert | ppm | part per million | | de | direct current | L | liter | qt | quart | | °C | degree Celsius | lb | pound | rad | radian | | °F | degree Fahrenheit | lbf | pound-force | rf | radio frequency | | diam | diameter | lbf∙in | pound-force inch | rh | relative humidity | | emf | electromotive force | lm | lumen | S | second | | eq | equation | ln | logarithm (natural) | SD | standard deviation | | F | farad | log | logarithm (common) | sec. | section | | fc | footcandle | M | molar | SWR | standing wave radio | | fig. | figure | m | meter | uhf | ultrahigh frequency | | FM | frequency modulation | min | minute | uv | ultraviolet | | ft | foot | mm | millimeter | V | volt | | ft/s | foot per second | mph | mile per hour | vhf | very high frequency | | g | acceleration | m/s | meter per second | W | watt | | g | gram | N | newton | λ | wavelength | | gr | grain | N•m | newton meter | wt | weight | area = $unit^2$ (e.g., t^2 , in^2 , etc.); volume = $unit^3$ (e.g., t^3 , t^3 , etc.) ## **PREFIXES** | d | deci (10 ⁻¹) | da | deka (10) | |----|---------------------------|----|--------------------------| | c | centi (10 ⁻²) | h | hecto (10 ²) | | m | milli (10 ⁻³) | k | kilo (10 ³) | | μ | micro (10 ⁻⁶) | M | mega (10 ⁶) | | 'n | nano (10 ⁻⁹) | G | giga (10 ⁹) | | p | pico (10 ⁻¹²) | T | tera (10 ¹²) | ## COMMON CONVERSIONS (See ASTM E380) ft/s x 0.03048000 = m/s ft x 0.3048 = m ft•lbf x 1.355818 =J gr x 0.06479891 = g in x 2.54 = cm kWh x 3,6000,000 = J lb x 0.4535924 = kg lbf x 4.448222 = N lbf/fi x 14.59390 = N/m lbf•in x 0.1129848 = N•m lbf/in² x 6894.757 = Pa mph x 1.609344 = km/h qt x 0.9463529 = L Temperature: $(T \circ F-32) \times 5/9 = T \circ C$ Temperature: $(T \circ C \times 9/5)+32 = T \circ F$ # NIJ STANDARD FOR BALLISTIC RESISTANT PROTECTIVE MATERIALS #### 1. PURPOSE The purpose of this standard is to establish minimum performance requirements and methods of test for ballistic resistant protective materials. This standard supersedes NIJ Standard-0108.00, Ballistic Resistant Protective Materials, dated December 1981. This revision adds threat level III-A and establishes threat level classifications that are consistent with other NIJ standards for ballistic protection. ## 2. SCOPE AND CLASSIFICATION ## 2.1 Scope This standard is applicable to all ballistic resistant materials (armor) intended to provide protection against gunfire, with the exception of police body armor and ballistic helmets, which are the topic of individual NIJ performance standards [1,2]. Many different types of armor are now available that range in ballistic resistance from those designed to protect against small-caliber handguns to those designed to protect against high-powered rifles. Ballistic resistant materials are used to fabricate portable ballistic shields, such as a ballistic clipboard for use by a police officer; to provide ballistic protection for fixed structures such as critical control rooms or guard stations; and to provide ballistic protection for the occupants of vehicles. The ballistic resistant materials used to fabricate armor include metals, ceramics, transparent glazing, fabric, and fabric-reinforced plastics; they are used separately or in combination, depending upon the intended threat protection. The ballistic threat posed by a bullet depends, among other things, on its composition, shape, caliber, mass, and impact velocity. Because of the wide variety of cartridges available in a given caliber, and because of the existence of hand loads, armors that will defeat a standard test round may not defeat other loadings in the same caliber. For example, an armor that prevents penetration by a 357 Magnum test round may or may not defeat a 357 Magnum round with a higher velocity. Similarly, for identical striking velocities, nondeforming or armor-piercing rounds pose a significantly greater penetration threat than an equivalent lead core round of the same caliber. The test ammunitions specified in this standard represent common threats to the law enforcement community. #### 2.2 Classification Ballistic resistant protective materials covered by this standard are classified into five types, by level of performance. ## 2.2.1 Type 1 (22 LR; 38 Special) Numbers in brackets refer to the references in appendix A. This armor protects against the standard test rounds as defined in section 5.2.1. It also provides protection against lesser threats such as 12 gauge No. 4 lead shot and most handgun rounds in calibers 25 and 32. ## 2.2.2 Type II-A (Lower Velocity 357 Magnum; 9 mm) This armor protects against the standard test rounds as defined in section 5.2.2. It also provides protection against lesser threats such as 12 gauge 00 buckshot, 45 Auto., 38 Special \pm P and some other factory loads in caliber 357 Magnum and 9 mm, as well as the threats mentioned in section 2.2.1. ## 2.2.3 Type II (Higher Velocity 357 Magnum; 9 mm) This armor protects against the standard test rounds as defined in section 5.2.3. It also provides protection against most other factory loads in caliber 357 Magnum and 9 mm, as well as threats mentioned in section 2.2.1 and 2.2.2. #### 2.2.4 Type III-A (44 Magnum; Submachine Gun 9 mm) This armor protects against the standard test rounds as defined in section 5.2.4. It also provides protection against most handgun threats as well as the threats mentioned in sections 2.2.1 through 2.2.3. ## 2.2.5 Type III (High-Powered Rifle) This armor protects against the standard test round as defined in section 5.2.5. It also provides protection against most lesser threats such as 223 Remington (5.56 mm FMJ), 30 Carbine FMJ, and 12 gauge rifle slug, as well as the threats mentioned in sections 2.2.1 through 2.2.4. #### 2.2.6 Type IV (Armor-Piercing Rifle) This armor protects against the standard test round as defined in section 5.2.6. It also provides at least single hit protection against the threats mentioned in sections 2.2.1 through 2.2.5. ## 2.2.7 Special Type A purchaser having a special requirement for a level of protection other than one of the above standards should specify the exact test rounds to be used, and indicate that this standard shall govern in all other respects. ## 3. DEFINITIONS ## 3.1 Angle of Incidence The angle between the line of flight of the bullet and the perpendicular to the plane tangent to the point of impact (see fig. 1). Also known as angle of obliquity. FIGURE 1. Angle of incidence ## 3.2 Fair Hit A hit that impacts the ballistic resistant protective material at an angle of incidence no greater than 5°, and is at least 5 cm (2 in) from a prior hit or the edge of the test specimen and at an acceptable velocity as defined in this standard. A bullet that impacts too close to the edge or a prior hit and/or at too high a velocity, but does not penetrate, shall be considered a fair hit for the determination of nonpenetration. ## 3.3 Full Metal Jacketed (FMJ) Bullet A bullet made of lead completely covered, except for the base, with copper alloy (approximately 90 copper-10 zinc). ## 3.4 Jacketed Soft Point (JSP) Bullet A bullet made of lead completely covered, except for the point, with copper alloy (approximately 90 copper-10 zinc). #### 3.5 Lead Bullet A bullet made of lead alloyed with hardening agents #### 3.6 Penetration Perforation of a witness plate by any part of the test specimen or test bullet, as determined by passage of light when held up to a 60-W light bulb. ## 3.7 Strike Face The surface of a ballistic resistant protective material designated by the manufacturer as the surface that should be exposed to (face) the weapon threat. #### 3.8 Semiwadcutter A bullet shape characterized by a flat nose and a tapered section leading to a cylindrical bullet body with a sharp break where the taper meets the body. #### 3.9 Witness Plate A thin sheet of aluminum alloy placed behind a test specimen to determine the potential for an incapacitating injury. ## 4. REQUIREMENTS ## 4.1 Acceptance Criteria A ballistic material satisfies the requirements of this standard if the sample item (see sec. 5.1) meets the requirements of sections 4.2 through 4.4. ## 4.2 Workmanship Ballistic resistant protective materials shall be free from dents, blisters, cracks, crazing, chipped or sharp corners, and other evidence of inferior workmanship. ## 4.3 Labeling The Sample item and each full size panel of ballistic resistance material shall be permanently and legibly labeled and shall include the following information. - a) Name, designation, or logo of the manufacturer - b) Type of material, according to section 2 of this standard - c) Month and year of manufacture - d) Lot number - e) Strike face, if any - f) Certification of compliance with this edition of this standard Items c and d may be incorporated into a single number, e.g., a serial number. ## 4.4 Ballistic Resistance The ballistic resistance of each test specimen of ballistic resistant protective material shall be determined in accordance with section 5.3. The test weapon and ammunition used during this test shall be those specified in table 1 in accordance with the type (threat level rating) specified by the manufacturer (sec. 4.3). Any penetration of the witness plate shall constitute failure. The ballistic resistance test variables and test requirements are presented in table 1. Table 1. Test Summary **Test Variables** Performance Requirements | Armor Type | Test Ammunition | Nominal
Bullet Mass | Suggested Barrel
Length | Required Bullet
Velocity | Required
Hits Per
Armor
Specimen | Permitted
Penetrations | |---|--|-------------------------------------|--|--|---|---------------------------| | Ĭ | 22 LRHV
Lead
38 Special
RN Lead | 2.6 g
40 gr
10.2 g
158 gr | 15 to 16.5 cm
6 to 6.5 in
15 to 16.5 cm
6 to 6.5 in | 320 ± 12 m/s
1050 ± 40 ft/s
259 ± 15 m/s
850 ± 50 ft/s | 5
5 | 0 | | II-A | 357 Magnum
JSP
9 mm
FMJ | 10.2 g
158 gr
8.0 g
124 gr | 10 to 12 cm
4 to 4.75 in
10 to 12 cm
4 to 4.75 in | 381 ± 15 m/s
1250 ± 50 ft/s
332 ± 12 m/s
1090 ± 40 ft/s | 5 | 0 | | II . | 357 Magnum
JSP
9 mm
FMJ | 10.2 g
158 gr
8.0 g
124 gr | 15 to 16.5 cm
6 to 6.5 in
10 to 12 cm
4 to 4.75 in | 425 ± 15 m/s
1395 ± 50 ft/s
358 ± 12 m/s
1175 ± 40 ft/s | <i>5</i>
5 | 0 | | III-A | 44 Magnum
Lead SWC Gas
Checked | 15.55 g
240 gr | 14 to 16 cm
5.5 to 6.25 in | 426 ± 15 m/s
1400 ± 50 ft/s | 5 | 0 | | | 9 mm
FMJ | 8.0 g
124 gr | 24 to 26 cm
9.5 to 10.25 in | 426 ± 15 m/s
1400 ± 50 ft/s | 5 | 0 | | Ш | 7.62 mm
308 Winchester
FMJ | 9.7 g
150 gr | 56 cm
22 in | 838 ± 15 m/s
2750 ± 50 ft/s | 5 | 0 | | IV | 30-06
AP | 10.8 g
166 gr | 56 cm
22 in | 868 ± 15 m/s
2850 ± 50 ft/s | 1 | 0 | | Special
Requirement
(see sec. 2.2.7)* | * | * | * | * | • | * | Abbreviations: AP - Armor Piercing ons: AP - Armor Piercing FMJ - Full Metal Jacket JSP - Jacketed Soft Point LRHV - Long Riffe High Velocity RN - Round Nose SWC - Semi-Wadcutter #### 5. TEST METHODS ## 5.1 Sampling The test specimen shall be a current production sample of the ballistic resistant material at least 30.5x30.5 cm (12x12 in). ## 5.2 Test Equipment It should be noted that hand-loaded ammunition may be required to achieve some of the bullet velocities required in the following sections. #### 5.2.1 Type I Test Weapons and Ammunition #### 5.2.1.1 22 LR The test weapon may be a 22-caliber handgun or test barrel. The use of a handgun with a 10 to 12 cm (6 to 6.5 in) barrel is suggested. Test bullets shall be 22 Long Rifle High Velocity lead, with nominal masses of 2.6 g (40 gr) and measured velocities of 320 ± 12 m (1050 ± 40 ft) per second. #### 5.2.1.2 38 Special The test weapon may be a 38 Special handgun or test barrel. The use of a handgun with a 15 to 16.5 cm (6 to 6.5 in) barrel is suggested. Test bullets shall be 38 Special round-nose lead, with nominal masses of 2.6 g (158 gr) and measured velocities of 259 ± 15 m (850 ± 50 ft) per second. #### 5.2.2 Type II-A Test Weapons and Ammunition #### 5.2.2.1 Lower Velocity 357 Magnum The test weapon may be a 357 Magnum handgun or test barrel. The use of a handgun with a 10 to 12 cm (4 to 4.75 in) barrel is suggested. Test bullets shall be 357 Magnum jacketed soft point, with nominal masses of 10.2 g (158 gr) and measured velocities of 381 ± 15 m (1250 \pm 50 ft) per second. #### 5.2.2.2 Lower Velocity 9 mm The test weapon may be a 9 mm handgun or test barrel. The use of a handgun with a 10 to 12 cm (4 to 4.75 in) barrel is suggested. Test bullets shall be 9 mm full metal jacketed, with nominal masses of 8.0 g (124 gr) and measured velocities of 332 ± 12 m (1090 \pm 40 ft) per second. ## 5.2.3 Type II Test Weapons and Ammunition #### 5.2.3.1 Higher Velocity 357 Magnum The test weapon may be a 357 Magnum handgun or test barrel. The use of a handgun with a 15 to 16.5 cm (6 to 6.5 in) barrel is suggested. Test bullets shall be 357 Magnum jacketed soft point, with nominal masses of 10.2 g (158 gr) and measured velocities of 425 ± 15 m (1395 ± 50 ft) per second. ## 5.2.3.2 Higher Velocity 9 mm The test weapon may be a 9 mm handgun or test barrel. The use of a handgun with a 10 to 12 cm (4 to 4.75 in) barrel is suggested. Test bullets shall be 9 mm full metal jacketed, with nominal masses of 8.0 g (124 gr) and measured velocities of 358 \pm 12 m (1175 \pm 40 ft) per second. ## 5.2.4 Type III-A Test Weapons and Ammunition ## 5.2.4.1 44 Magnum The test weapon may be a 44 Magnum handgun or test barrel. The use of a handgun with a 14 to 16 cm (5.5 to 6.25 in) barrel is suggested. Test bullets shall be 44 Magnum, lead semiwadcutter with gas checks, nominal masses of 15.55 g (240 gr), and measured velocities of 426 ± 15 m (1400 ± 50 ft) per second. #### 5.2.4.2 Submachine Gun (SMG) 9 mm The test weapon may be a 9 mm SMG or test barrel. The use of a test barrel with a 24 to 26 cm (9.5 to 10.25 in) barrel is suggested. Test bullets shall be 9 mm full metal jacketed, with nominal messes of 8.0 g (124 gr) and measured velocities of 426 ± 15 m (1400 ± 50 ft) per second. ## 5.2.5 Type III Test Weapon and Ammunition The test weapon may be a rifle or a test barrel chambered for 7.62-mm (308 Winchester) ammunition. The use of a rifle with a barrel length of 56 cm (22 in) is suggested. Test bullets shall be 7.62 mm full metal jacketed (U.S. military designation M80) with nominal masses of 9.7 g (150 gr) and measured velocities of 838 ± 15 m (2850 ± 50 ft) per second. ### 5.2.6 Type IV Test Weapon and Ammunition The test weapon may be a rifle or a test barrel chambered for 30–06 ammunition. The use of a rifle with a barrel length of 56 cm (22 in) is suggested. Test bullets shall be 30 caliber armor piercing (U.S. military designation APM2), with nominal masses of 10.8 g (166 gr) and measured velocities of 868 \pm 15 m (2850 \pm 50 ft) per second. ## 5.2.7 Special Type Test Weapon and Ammunition The test weapon, cartridge type, bullet construction, bullet caliber, bullet mass, and bullet striking velocity must all be specified by the user. #### 5.2.8 Chronograph The chronograph shall have a precision of 1 μs and an accuracy of 2 μs . Its triggering devices shall be of either the photoelectric or conductive screen type. ## 5.2.9 Support Fixture The test specimen shall be supported by a fixture that permits its position and attitude to be readily adjusted so that it is perpendicular to the line of flight of the bullet at the point of impact. #### 5.2.10 Witness Plate The witness plate shall be a 0.5 mm (0.020 in) thick sheet of 2024-T3 or 2024-T4 aluminum alloy and shall be placed and rigidly affixed perpendicular to the line of flight of the bullet and 15 cm (6 in) beyond the armor under test. ## 5.3 Ballistic Resistance Test Condition the test specimen at a temperature of 20 to 28°C (68 to 82°F) for at least 24 h prior to test. Place the triggering devices 2 and 3 m (6.6 and 9.8 ft), respectively from the muzzle of the test weapon as shown in fig. 2, and arrange them so that they define planes perpendicular to the line of flight of the bullet. Measure the distance between them with an accuracy of 1.0 mm (0.04 in). Use the time of flight and distance measurements to calculate the velocity of each test round. After the specified test weapon has been supported, leveled, and positioned, fire one or more pretest rounds (as needed) through a witness plate to determine the point of impact. Place the test specimen in the support fixture and position it 5 m (16 ft) from the muzzle of the test weapon. Then position an unperforated witness plate 15 cm (6 in) beyond the test specimen. Fire a test round and record the velocity of the bullet as measured by the chronograph. Examine the witness plate to determine penetration, and examine the specimen to see if the bullet made a fair hit. If no penetration occurred, reposition the test specimen and repeat the procedure with additional test rounds until the test is completed. Space the hits as evenly as possible so that every portion of the test specimen is subject to test. FIGURE 2. Ballistic test setup # APPENDIX A-REFERENCES - Ballistic resistance of police body armor. NIJ Standard-0101.02. National Institute of Justice, U.S. Department of Justice, Washington, DC 20531. Ballistic helmets. NIJ Standard-0106.01. National Institute of Justice, U.S. Department of - Justice, Washington, DC 20531; 1981 December. Nov. 5, 2006 Sunday Time: 1755 Date: Day: Location: Ocotillo Wells test site 86' Temp: **Target Structure** Integraspec standard ICF panel 48" wide by 24" Tall Description: Standard end bucks Sand Dirt Soil (1 panel wide by 2 panels tall) Concrete Wet / Dry Web size: 4" 5" 6" 8" 10" 12" Shot Type Description: Media Filler: Serial #: Caliber: .22 Long Rifle Weapon: Ruger 10/22 Rifle 236-80714 1120 Bullet Wt. and Type: 40Gr RN Velocity: Ammunition Type: Winchester X22ir **Test Protocol** five rounds fired into disbursed impact points Description: one in each corner of both panels and one in the center of each panel 10 Number of rounds Fired: Results Impact Point: 4 corners and center both top and bottom panel Penetration Depth: Media encountered: Stud strip Webbing Back Panel Impact- Yes / No Back Panel Damage- Yes / No No Back Panel Blow Through- Yes / No Spall: Witness Plate Impact: No Date: Nov. 5, 2006 Day: Sunday Time: 1630 Location: Plaster city test site Temp: 92. **Target Structure** Description: Integraspec standard ICF panel 48" wide by 24" Tall Standard end bucks (1 panel wide by 2 panels tall) Media Filler: Concrete Sand Dirt Soil Wet / Dry Web size: 4" 5" 6" 8" 10" 12" Shot Type Description: Weapon: Remminton 11-87 Serial #: PC501382 Caliber: 12Ga. Ammunition Type: Win. 00Buck (9 Pellets) Bullet Wt. and Type: 00 Buckshot Velocity: 1200fps **Test Protocol** Description: five rounds fired into disbursed impact points one in each corner of bottom panel and one in the center of panel Number of rounds Fired: 5 Results Impact Point: Penetration Depth: 4-4.5" Media encountered: Stud strip Webbing Back Panel Impact- Yes / No Back Panel Damage- Yes / No Back Panel Blow Through- Yes / No Spall: Yes- one stray pellet Witness Plate Impact: No Date: Nov. 5, 2006 **Test Shot Record** Day: Sunday Time: 1810 Location: Ocotillo Wells test site Temp: 86` **Target Structure** Description: Integraspec standard ICF panel 48" wide by 24" Tall Standard end bucks (1 panel wide by 2 panels tall) Media Filler: Concrete Sand Dirt Soil Wet / Dry Web size: 4" 5" 6" 8" 10" 12" Shot Type Description: Weapon: Glock G17 Serial #: **CNU 731 US** Caliber: 9mm Ammunition Type: 9mm Ball Bullet Wt. and Type: 124 Gr Ball Velocity: 1200fps Lot #: Test Protocol Description: 5 shot disbursed shot test Number of rounds Fired: 10 Results Impact Point: 4 corners and center Penetration Depth: Media encountered: Stud strip Webbing Back Panel Impact- Yes / No Back Panel Damage- Yes / No Back Panel Blow Through- Yes / No Spall: No Witness Plate Impact: Yes / No Nov. 5, 2006 Date: Day: Sunday Time: 1920 Location: Ocotillo Wells test site Temp: 841 **Target Structure** Description: Integraspec standard ICF panel 48" wide by 24" Tall Standard end bucks (1 panel wide by 2 panels tall) Media Filler: Concrete Sand Dirt Soil Wet / Dry Web size: 4" 5" 6" 8" 10" 12" Shot Type Description: Weapon: UZI Serial #: SA 48027 Caliber: 9mm Ammunition Type: 9mm Ball Bullet Wt. and Type: 124 Gr Ball Velocity: 1420 fps **Test Protocol** Description: five rounds fired in a disbursed pattern Number of rounds Fired: 10 Results Impact Point: four corners and center on both top and bottom panel Penetration Depth: 9-10.5" Media encountered: Stud strip Webbing Back Panel Impact- Yes / No Back Panel Damage- Yes / No Back Panel Blow Through- Yes / No Spall: No Witness Plate Impact: No Date: Oct.24,2006 Day: Tuesday Time: 1650 Location: Ocotillo Wells test site Temp: 90' **Target Structure** Description: Integraspec standard ICF panel 48" wide by 24" Tall Standard end bucks (1 panel wide by 2 panels tall) Media Filler: Concrete Sand Dirt Soil Wet / Dry Web size: 4" 5" 6" 8" 10" 12" **Shot Type** Description: Weapon: HK USP45 Serial #: 25-018903 Caliber: .45ACP Ammunition Type: Bullet Wt. and Type: 230Gr Ball 980fps Velocity: Lot #: **Test Protocol** Description: five rounds fired into disbursed impact points one in each corner of bottom panel and one in the center of panel Number of rounds Fired: 10 Results Impact Point: Penetration Depth: 4-6.2" Media encountered: Stud strip Webbing Back Panel Impact- Yes / No Back Panel Damage- Yes / No Back Panel Blow Through- Yes / No Spall: No Witness Plate Impact: No **Test Shot Record** Date: Nov. 5, 2006 Day; Sunday Time: Location: Ocotillo Wells test site Temp: **Target Structure** Description: Integraspec standard ICF panel 48" wide by 24" Tall Standard end bucks (1 panel wide by 2 panels tall) Media Filler: Concrete Sand Dirt Soil Wet / Dry Web size: 4" 5" 6" 8" 10" 12" Shot Type Description: Weapon: Sig Sauer Serial #: **AK 20806** Caliber: .357Sig Ammunition Type: Bullet Wt. and Type: 148 Gr. SWC Ball Velocity: Lot #: **Test Protocol** Description: five rounds fired into disbursed impact points one in each corner of both panels and one in the center of the panels Number of rounds Fired: 10 Results 1935 841 1270 fps Impact Point: Penetration Depth: 7-8.2" Media encountered: Stud strip Webbing Back Panel Impact- Yes / No Back Panel Damage- Yes / No Back Panel Blow Through- Yes / No Spall: No Witness Plate Impact: No Date: Nov. 5, 2006 **Test Shot Record** Day: Sunday Time: 1640 Location: Ocotillo Wells test site Temp: 92 **Target Structure** Description: Integraspec standard ICF panel 48" wide by 24" Tall Standard end bucks (1 panel wide by 2 panels tall) Media Filler: Concrete Sand Dirt Soil Wet / Dry Web size: 4" 5" 6" 8" 10" 12" **Shot Type** Description: 7.62x39 five shot disbursed impact test Weapon: SKS-59 Serial #: C-43981 Caliber: 7.62x39mm Ammunition Type: Wolf Bullet Wt. and Type: 124Gr Soviet Velocity: 2400fps Lot #: **Test Protocol** Description: five rounds fired into disbursed impact points one in each corner of bottom panel and one in the center of panel Number of rounds Fired: 10 Results Impact Point: full series Penetration Depth: Blow through Media encountered: Stud strip: yes Webbing: yes Back Panel Impact- Yes / No Back Panel Damage- Yes / No Back Panel Blow Through- Yes / No Spall: No Notes: 100% of rounds stopped Date: Nov. 5, 2006 Day: Sunday Time: 1835 Location: Ocotillo Wells test site Temp: 86' **Target Structure** Description: Integraspec standard ICF panel 48" wide by 24" Tall Standard end bucks (1 panel wide by 2 panels tall) Media Filler: Concrete Sand Dirt Soil Wet / Dry Web size: 4" 5" 6" 8" 10" 12" **Shot Type** Description: Weapon: M-40 Serial #: D6813118 Caliber: .308Win Ammunition Type: M80 Bullet Wt. and Type: 150Gr. Velocity: 2850fps **Test Protocol** Description: five rounds fired into disbursed impact points one in each corner of bottom panel and one in the center of panel one in each corner of top panel and one in the center of panel Number of rounds Fired: 10 Results Impact Point: Penetration Depth: 7.5-9" Media encountered: Stud strip Webbing Back Panel Impact- Yes / No Back Panel Damage- Yes / No Back Panel Blow Through- Yes / No Spall: No Witness Plate impact: Yes / No Nov. 5, 2006 Day: Sunday Time: 1850 Location: Ocotillo Wells test site Temp: 86 **Target Structure** Description: Date: Integraspec standard ICF panel 48" wide by 24" Tall Standard end bucks (1 panel wide by 2 panels tall) Media Filler: Concrete Sand Dirt Soil Wet / Dry Web size: 4" 5" 6" 8" 10" 12" Shot Type Description: Weapon: HS Precision 30-06 Serial #: 2394 Caliber: 30-06 Ammunition Type: APM2 Bullet Wt. and Type: 166Gr. Velocity: 2850fps **Test Protocol** Description: five rounds fired into disbursed impact points one in each corner of bottom panel and one in the center of panel one in each corner of top panel and one in the center of panel Number of rounds Fired: 10 Results Impact Point: Penetration Depth: 8-10" Media encountered: Stud strip Webbing Back Panel Impact- Yes / No Back Panel Damage- Yes / No Back Panel Blow Through- Yes / No Spall: No Witness Plate impact: Yes / No